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I. INTRODUCTION: 

Let p(z) = a0 + a1z + . . . . . +anzn be a polynomial of degree 
‘n’ (n>=1) with complex coefficients ai’s and z is a complex 
variable. 

By fundamental theorem of algebra p(z) vanishes at 
precisely ‘n’ points in the complex plane.  

Say, at z1, z2, . . . . . ., zn 

Therefore,  

p(z) = an ∏ (𝑧 − 𝑧𝑛
𝑘=1 k) 

In this note, we shall be discussing mainly polynomial 
functions which are analytic in the complex plane or regions 
in the complex plane. 

The basic results used are concerning analytic functions 
namely Rouchey’s theorem, Argument principle, Lucas 
theorem, and Maximum Modulus Principle. 

A complex number 𝛼 ℇ ℂ is a zero of polynomial p(z),  

if p(α)=0, ∑ 𝑎𝑛
𝑘=0 kzk = 0         (1) 

we denote, 

q(z) = zn 𝑝(1/𝑧)�������           (2)  

as the conjugate polynomial to p(z), useful in studying the 
growth of the polynomial or its derivative with respect to its 
value on the unit disk. 

We find  

 Therefore, q(z) = zk𝑎�n ∏ (1
𝑧

− 𝑧̅𝑛
𝑘=1 k) 

        = 𝑎�n ∏ (1 − 𝑧𝑧̅𝑛
𝑘=1 k)  

whose zeroes are 1
�̅�𝑘

, 1≤k≤ n 

i.e.  If zk  = rk𝑒𝑖𝛼k
 , where rk is the modulus of the zero and αk 

is the argument  

then the corresponding zero of q(z) is: 

1/𝑧̅k      = 1/rk𝑒𝚤𝛼k ���������  

= 1/ rk𝑒−𝑖𝛼k   

= 𝑒𝑖𝛼k/rk  

 

 

 

 

 

 

Fig.1. The figure shows the explanation of the problem  

Therefore,  

If the zero of p(z) lies inside the unit circle then 
corresponding zero of q(z) lies outside the unit circle and 
vice-versa.  

i.e. if z0 is a zero of p(z), its inverse point with respect to the 
unit disk is the zero of the corresponding polynomial q(z).  

Hence, if all zeroes of p(z) lie inside the unit disk then all 
the zeroes of q(z) lie outside the unit disk whereas, a zero on 
the unit circle remains unaltered. 

II. SECTION 1 
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A sub class of polynomials is defined as p(z) = zn p(1
𝑧
) is 

called self-inversive.[1] 

i.e. aj = an-j for j = 0,1, . . . . ,n. 

If zk  is a zero of p(z) and p(z) is self inversive then 1
𝑧𝑘

 is also 
its zero. 

Fig.2. The fig. shows that If one root is inside the unit disk 
then other root has to be outside the unit disk. 

Therefore,  

 zk  = rk𝑒𝑖𝛼k   

 then, 1
𝑧
 = 𝑒−𝑖𝛼k/rk   

i.e. If one root is inside the unit disk then other root has to 
be outside the unit disk as in fig.  

Now, Let m(p, r) = max |p(z)| 

Then, say : M = m(p,1) 

We study the growth m(p, r) with respect to the M = m(p,1) 
as R varies  

We know,  

 𝑚𝑎𝑥|𝑧|=𝑅 |p(z)| ≤ Rn 𝑚𝑎𝑥|𝑧|=1 |p(z)| , R ≥ 1                      (3) 

 𝑚𝑎𝑥|𝑧|=1 |p’(z)| ≤ n  𝑚𝑎𝑥|𝑧|=1 |p(z)|                                   (4)  

In case, there is no zero in the unit disk, results (3), (4) have 
been improved by: 

 𝑚𝑎𝑥|𝑧|=𝑅 |p(z)| ≤ (Rn +1) M/2  (Ankene and Revelin)      (5) 

And  𝑚𝑎𝑥|𝑧|=𝑅 |p’(z)| ≤ n M /2 ( P.D. Lax)                          (6) 

And both of them are best possible bounds attained when, 

P(z) = (αzn+β)/2, |α|=|β|=1 

The inequality,  

        |p(R𝑒𝑖𝜃)|+|q(R𝑒𝑖𝜃)| ≤ (Rn + 1) M                  (7) 

Is responsible for bound of (5), 

Now p(R𝑒𝑖𝜃)/ q(R𝑒𝑖𝜃) is analytic in |z|>1 when p(z)  ≠ 0 in 
|z|<1. 

On |z|=1, 

|q(z)|= |𝑎�n ∏ (1 − 𝑧𝑧̅𝑛
𝑘=1 k) | 

 = |an| ∏ |(1 − 𝑧𝑧̅𝑛
𝑘=1 k)|

 

   = |an| ∏ |(𝑧𝑧̅ − 𝑧𝑧̅𝑛
𝑘=1 k)|    as z𝑧̅ = 1 

 = |an| ∏ (|𝑧||𝑧̅ − 𝑧̅𝑛
𝑘=1 k)|     as |z| =1 

 =|an| ∏ |(𝑧𝑧̅ − 𝑧𝑧̅𝑛
𝑘=1 k)|         

 = |an| ∏ |(𝑧 − 𝑧𝑛
𝑘=1 k)| 

 = |p(z)| when |z|=1 

Therefore, �𝑝(𝑧)
𝑞(𝑧)

� = 1 

By, Maximum- Modulus principle, 

�𝑝(𝑧)
𝑞(𝑧)

� ≤ 1 for |z|>1 

 |p(z)| ≤ |q(z)| for |z|>1  and hence, when p(z) ≠ 0 
in |z|<1 using (7)  

We arrive at (5) i.e. the growth of |p(R𝑒𝑖𝜃)|is determined 
with respect to M. 

Next, we know all zero of p(z) = a0+a1z+ . . . . . +anzn  

lie in   |z|≤1+max�𝑎𝑗
𝑎𝑛

� where 0 ≤ j ≤ n-1 

say,  = 1+A, where max�𝑎𝑗
𝑎𝑛

�=A  (Cauchy’s theorem) 

∴ The following result gives a better estimation of the 
region containing all zeroes with restrictions on the 
coefficients. 

A. Further explanation 

Consider p(z) = a0+a1z+ . . . . . +anzn,  an ≠ 0 with 
|an|>|aj|; j=0, . . . . . , n-1 then all the zeroes [3] of the p(z) 
lie in |z|≤ 2, 

𝑒−𝑖𝛼k/rk 
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Let |p(z)| = | anzn + . . . . . +a1z+ a0 | ≥ |anzn|-|an-1zn-1 + . 
. . . . +a1z+ a0 | 

   ≥ |an||zn|-(|anzn-1|+ . . . . +|a0|) 

   = |an||zn|{1-[(| an-1/an|) 1
|𝑧|

 + (|an-2/an|) 1
|𝑧|2 + . . . . 

+|a0 / an| 1
𝑧n]} 

   ≥ |an||zn|[1- { 1
|𝑧|

 + 1
|𝑧|2 + . . . . .+ 1

𝑧n }]  as |aj|≤ |an| 

   = |an||zn|(1-∑ 1
|𝑧|

𝑛
𝑘=1 k) > |an||zn|(1-∑ 1

|𝑧|
∞
𝑘=1 k) 

  = |an||zn|(1-∑ 1
|𝑧|

∞
𝑘=1 k +1-1) 

   = |an||zn|[2 - (1+∑ 1
|𝑧|

𝑛
𝑘=1 k)] 

   = |an||zn|[2- { 1
|𝑧|

 + 1
|𝑧|2 + . . . . .+ 1

𝑧n + . . .+ ∞}]  

– as G.P. formed 1
|𝑧|

<1, 

     = |an||zn|[ 2 – ( 1
1− 1

|𝑧|
)]  

   = |an||zn| [2 - |𝑧|
|𝑧|−1

] 

   = |an||zn|(|𝑧|−2
|𝑧|−1

)  > 0 when |z|>2 

 i.e. |p(z)|> 0 for all z, |z|>2 

Hence, all the zeroes of p(z) lie in |z|≤ 2 

Now,  

We state another interesting well known result about the 
region containing all zeroes of a polynomial with more 
restrictions on the coefficients known as Enesterom-Kakeya 
Theorem  

“If p(z) = ∑ 𝑎𝑛
𝑘=0 kzk is a polynomial of degree n with real 

coefficients 0≤a0....≤an then all the zeroes of p(z) lie in 
|z|≤1”. 

III. SECTION 2 

We state some well known results: 

2.1 Rouchey’s Theorem: 

 If p(z), q(z) are analytic interior to a simple closed 
Jordan Curve ∁  and if they are continuous on ∁ and |p(z)| 
< |q(z)| on C,  

 Then, the f(z) = p(z) + q(z) has the same no. Of 
zeroes interior to C as does q(z). 

2.2. Lucas Theorem: 

 Any convex polygon which contains all the zeroes 
of a p(z) also contains all the zeroes of its derivative. 

 In particular, any circle C which encloses all zeroes 
of p(z) also encloses all zeroes of p’(z). 

2.3. Maximum Modulus Principle: 

 If G is a region and f: G→ C is an analytic function 
such that there is a point a in G with |f(a)|≥|f(z)| for all z in 
G then f is constant. 

2.4. Winding Number: 

 “Let r be a closed rectifiable curve and a ∈ C but a ∉ γ 

Then, 1
2ᴨ𝑖 ∫ 𝑑𝑧

𝑧−𝑎γ  is an integer and is denoted by n(γ, a) called 

winding number”[2] 

Fig.3. The figure provides the explanation for winding 
number problem. 

proof: 

Let z= r(s), s ∈ [0,1]                     (1) 

Define, ∫ 𝑟′(𝑠)
𝑟(𝑠)

𝑡
0 ds = g(t)      (2) 

r is complex valued function of a real variable s  

∴ g is derivable with r(0) = r(1) in [0, 1] 

 z= r(s) 

  dz = r(s)ds 
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     ∫ 𝑑𝑧
𝑧−𝑎γ  = g(1) 

             = ∫ 𝑟′(𝑠)
𝑟(𝑠)−𝑎

1
0 ds    (3) 

From (2) on differentiating with respect to t  

by Leibnitz rule, 

g’(t) = 𝑑
𝑑𝑡 ∫ 𝑟′(𝑠)

𝑟(𝑠)−𝑎
𝑡

0 ds = 0 + r’(t)/r(t)-a + 0 , γ :[0, 1]→C         

(4)  

Now, 𝑑
𝑑𝑡

 (e-g(t)(r(t)-a)) 

  = e-g(t) r’(t) +(r(t)-a) (e-g(t)(-g’(t))) 

  = e-g(t)[r’(t) – g’(t) (r(t)-a)] 

= e-g(t) [r’(t) -  – 𝑟′(𝑡)
(𝑟(𝑡)−𝑎)

 x (r(t)-a)] 

  = 0 using (4)  [∴ 𝑟(𝑡)≠ a] 

Hence, e-g(t)(r(t)-a) is a constant function 

In particular, at t=0, t=1; 

∴ e-g(0)(r(0)-a) is same constant 

 = e-g(t) (r(t)-a) = e-g(0)(r(0)-a) = e-g(1)(r(1)-a) 

as r(0) = r(1) as r(t) is closed 

We get, e-g(0) = e-g(1) 

But from (2), g(0)=0, 

  ∴ e-g(0) = e0 = 1 = e-g(1) 

But it is possible when g(1) = 2𝜋𝑖𝑘 for k any integer [𝑒2𝜋𝑖𝑘= 
cos 2𝜋𝑘+isin 2𝜋𝑘] 

Hence, g(1) = 2 𝜋𝑖𝑘 

But from (3),  

g(1) = ∫ 𝑑𝑧
𝑧−𝑎γ   = 2𝜋𝑖𝑘 

1
2𝜋𝑖 ∫ 𝑑𝑧

𝑧−𝑎γ  = k as some integer and where k becomes the 

Winding Number. 

Now, results can be proved using this: 

A. Explanation with example  

Show any polynomial can be written in power of z-a and a 
is a complex no. Hence, without Cauchy’s Integral Formula 

prove: p(a)= 1
2𝜋𝑖 ∫ 𝑝(𝑧)𝑑𝑧

𝑧−𝑎γ  

Where, γ is a circle with center z=a  

Proof: Let p(z) = ∑ 𝑎𝑛
𝑘=0 kz

k      (1) 

 = ∑ 𝑎𝑛
𝑘=0 k (z-a+a)k 

  = ∑ 𝑎𝑛
𝑘=0 k [ 𝐶𝑘

0 (z-a)ka0 + . . . . . . + 𝐶𝑘
k a

k ] 

Using Binomial Theorem,  

It is repeating itself in degree of (z-a) 

p(z) = ∑ 𝐴𝑛
𝑗=0 j (z-a)j     (2) 

        = A0+A1(z-a)+. . . .+An(z-a)n  

p(a) = A0 = ∑ 𝑎𝑛
𝑘=0 kzk      (3) 

Now, 1
2𝜋𝑖 ∫ 𝑝(𝑧)𝑑𝑧

𝑧−𝑎γ   

= 1
2𝜋𝑖 ∫ ∑ 𝐴𝑗𝑛

𝑗=0
(𝑧−𝑎)𝑗𝑑𝑧

𝑧−𝑎γ   using (2) 

= 1
2𝜋𝑖 ∫ 𝐴γ 0 / (z-a) +A1 + A2(z-a)+ . . . . +An (z-a)n-1dz 

= 1
2𝜋𝑖 ∫ 𝐴γ 0 / (z-a) dz + 0 +. . . . . +0 

= 1
2𝜋𝑖

𝐴𝑜 ∫ 𝑑𝑧γ  / (z-a)    [ … ∫ 𝑑𝑧
𝑧−𝑎γ   =∫ 𝑒𝑖𝜃 𝑖𝑑𝜃

𝑒𝑖𝜃
2𝜋

0  = 2𝜋𝑖] 

= 1
2𝜋𝑖

𝐴𝑜 x 2𝜋𝑖 x 1  

= A0 = p(a) by using (3). Hence, proved. 

B, Another example 

Locate the regions containing all the roots of equations: 

 Z5 + 15z + 1 =0  

Consider, f(z) = 15z 

 g(z) = z5+1 

use notation zeroes of f(z)at |z| origin |z|≤ 3/2 at  

|f(z)| = 15 x 3/2 = 45/2 
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Now, |g(z)|= |z5+1| 

    ≤ |z5|+ 1 

    ≤ |3/2|5 +1 = (243/32) +1 = 245/2 

Therefore, |g(z)| ≤ |f(z)| 

Then, f(z) has only one zero  

→ |z| ≤ 3/2 

Therefore, g(z) + f(z) also has one zero in |z| ≤ 3/2 

Again consider, f(z) = z5 

            g(z) = 15z + 1 

f|z| = 25 = 32 

g|z| = 15x2+1 = 31 

thus, g|z| < f|z|;  |z|=2  

Also, f(z) containing all 5 zeroes in equation ≤ 2 

Therefore, g(z) + f(z) = z5+ 15z+1 

Has all 5 zeroes in |z| <=2 in the given eq. Having zero in 
|z|<=3/2 and other four remaining 3/2 <=|z| <=2. 

C. Another example 

Consider no. Of zeroes in z8 -4z5+z2-1 = 0 lie in unit disk. 

Denoting f(z) = -4z5 and g(z) = z8+z2-1, 

|f(z)| = 4 where eq. |g(z)|<= 1+1+1 = 3 

Therefore, |g(z)| < |f(z)| on |z| =1 now all 5 zeroes. 

By Rouchey’s theorem,  

eq. g(z) + f(z) = z8 – 4z4 +z2-1 lie in |z| <=1  
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